
MATH20132 Calculus of Several Variable. 2020-21

Solutions to Problems 3: The Directional Derivative

1 Define the functions

i. f : R2 → R, x 7→ x(x+y) and

ii. g : R2 → R, x 7→ y(x−y) .

Find the directional derivatives of f and g at a = (1, 2)T in the direction
v = (2,−1)T/

√
5.

Solution First note that

a + tv =

(
1 + 2t/

√
5

2− t/
√

5

)
.

So

f(a + tv) =

(
1 +

2t√
5

)(
3 +

t√
5

)
= 3 +

7√
5
t +

2

5
t2.

Thus f(a) = 3 and

f(a + tv)− f(a)

t
=

7√
5

+
2

5
t→ 7√

5

as t→ 0. Since the limit exists the directional derivative exists and satisfies
dvf(a) = 7/

√
5.

For g we have

g(a + tv) =

(
2− t√

5

)(
−1 +

3t√
5

)
= −2 +

7√
5
t− 3

5
t2.

Thus g(a) = −2 and

g(a + tv)− g(a)

t
=

7√
5
− 3

5
t→ 7√

5
,

as t→ 0. Since the limit exists the directional derivative exists and satisfies
dvg(a) = 7/

√
5.

2. Find the directional derivative of f : R2 → R, x → x2y at a = (2, 1)T in
the direction of the unit vector v = (1,−1)T/

√
2.
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Solution First note that

a + tv =

(
2 + t/

√
2

1− t/
√

2

)
,

so

f(a + tv) =

(
2 +

t√
2

)2(
1− t√

2

)
= 4− 3

2
t2 − 1

2
√

2
t3.

This leads to the existence of the directional derivative and it’s value
dvf(a) = 0.

3. Define the function h : R3 → R, by x → xy + yz + xz. By verifying the
definition, find the directional derivative of h at a = (1, 2, 3)T in the direction
of the unit vector v = (3, 2, 1)T/

√
14.

Solution First note that

a + vt =

 1 + 3t/
√

14

2 + 2t/
√

14

3 + t/
√

14

 .

So

h(a + vt) =

(
1 + 3

t√
14

)(
2 + 2

t√
14

)
+

(
2 + 2

t√
14

)(
3 +

t√
14

)

+

(
1 + 3

t√
14

)(
3 +

t√
14

)

= 2 + 8
t√
14

+ 6
t2

14
+ 6 + 8

t√
14

+ 2
t2

14
+ 3 + 10

t√
14

+ 3
t2

14

= 11 + 26
t√
14

+ 11
t2

14
.

Then

h(a + vt)− h(a)

t
=

1

t

(
26

t√
14

+ 11
t2

14

)
= 26

1√
14

+ 11
t

14

→ 26√
14

,

as t→ 0. Since the limit exists the directional derivative exists and satisfies
dvh(a) = 26/

√
14.

2



4. Define the function f : R3 → R, by x→ xy2z. By verifying the definition,
find the directional derivative of f at a = (1, 3,−2)T in the direction of the
unit vector v = (−1, 1,−2)T/

√
6.

Solution Firstly,

a + tv =

 1− t/
√

6

3 + t/
√

6

−2− 2t/
√

6

 .

Then

f(a + tv) =

(
1− t√

6

)(
3 +

t√
6

)2(
−2− 2

t√
6

)
= −18− 2t

√
6 +

8

3
t2 +

1

3
t3
√

6 +
1

18
t4.

You do not need all this detail, instead write it as −18 − 2t
√

6 + O (t2),
where the O (t2) notation represents the sum of all terms with t2 or higher
powers.

This will lead us to dvf(a) = −2
√

6.

5. Define the function f : R3 → R2 by

x→
(

xy
yz

)
,

where x = (x, y, z)T . By verifying the definition, find the directional deriva-
tive of f at a = (1, 3,−2)T in the direction of the unit vector v = (−1, 1,−2)T/

√
6.

Do not look at the component functions separately.

Solution Consider, for t 6= 0,

f(a + tv)− f(a)

t
=

1

t

{( (
1− t/

√
6
) (

3 + t/
√

6
)(

3 + t/
√

6
) (
−2− 2t/

√
6
) )−( 3

−6

)}

=
1

t

(
−2t/

√
6− t2/6

−8t/
√

6− 2t2/6

)
=

(
−2/
√

6− t/6

−8/
√

6− 2t/6

)

→

(
−2/
√

6

−8/
√

6

)
as t→ 0,

= −
√

2

3

(
1
4

)
.
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Since the limit exists the directional derivative exists and satisfies

dvf (a) = −
√

2

3

(
1
4

)
.

6 Define the function f : R2 → R2 by

f(x) =

(
x (x + y)
y (x− y)

)
.

Find the directional derivative of f at a = (1, 2)T in the direction v =
(2,−1)T /

√
5.

Hint Notice the difference in wording between this question and the previous
one; here I do not ask you to verify the definition.

Solution Use the result that the directional derivative of a vector-valued
function exists iff the directional derivatives of it’s component functions exist
and satisfy dvf (a)i = dvf

i (a). In this case the component functions have
been seen in Question 1, where their directional derivatives were shown to
exist and thus dvf (a) exists. Further,

dvf(a) =

(
dvf

1(a)
dvf

2(a)

)
=

(
7/
√

5

7/
√

5

)
.

7 Define the function f : R2 → R2 by

f(x) =

(
xy2

x2y

)
.

Find the directional derivative of f at a = (2, 1)T in the direction v =
(1,−1)T/

√
5.

Solution dvf(a) exists iff dvf
1(a) and dvf

2(a). Here f 1(x) = xy2 was an
example in lectures where we found dvf

1(a) = −3/
√

2. And f 2(x) = x2y was
the subject of Question 2 above where we found that dvf

2(a) = 0. Hence

dvf(a) =

(
dvf

1(a)
dvf

2(a)

)
=

1√
2

(
−3

0

)
.
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i. Let c ∈ Rn be fixed. Let f : Rn → R,x 7→ c • x. Show that

dvf(a) = f(v)

for all a,v ∈ Rn.

ii. Let M ∈Mm,n (R) and f : Rn → Rm,x 7→Mx. Show that

dvf(a) = f(v)

for all a,v ∈ Rn.

iii. Can you generalise these results? I.e. of what type of function are
x 7→ c • x and x 7→Mx examples?

Solution i. Let a,v ∈ Rn be given. Consider

f(a + tv)− f(a)

t
=

1

t
(c • (a + tv)− c • a) =

1

t
(c • a + tc • v − c • a)

since the scalar product is distributive

= c • v = f(v) ,

for all t 6= 0. Hence

lim
t→0

f(a + tv)− f(a)

t
= f(v) .

That the limit exists means that the directional derivative exists. That the
limit is f(v) means that dvf(a) = f(v) .

ii. Let a,v ∈ Rn be given. Consider

f(a + tv)− f(a)

t
=

1

t
(M (a + tv)−Ma) =

1

t
(Ma + tMv −Ma)

since matrix multiplication is distributive

= Mv = f(v) ,

for all t 6= 0. Hence

lim
t→0

f(a + tv)− f(a)

t
= f(v) .
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That the limit exists means that the directional derivative exists. That the
limit is f(v) means that dvf(a) = f(v) .

iii. Both x 7→ c • x and x 7→ Mx are examples of linear functions. Let
L : Rn → Rm be a linear function. Let a,v ∈ Rn be given. Consider

L(a + tv)− L(a)

t
=

L(a) + tL(v)− L(a)

t

by the linearity of L

= L(v) ,

for all t 6= 0. Hence

lim
t→0

L(a + tv)− L(a)

t
= L(v) .

That the limit exists means that the directional derivative exists. That the
limit is L(v) means that dvL(a) = L(v) .

9. Assume for the scalar-valued function f : U ⊆ Rn → R the directional
derivative dvf(a) exists for some a,v ∈ Rn. Prove that

lim
t→0

f(a + tv) = f(a) .

This is yet another example of the principle that if a function is differentiable
at a point then it is continuous at that point. There are no new ideas in the
proof, look back at previous proofs of differentiable implies continuous.

Solution This is a proof you should recognise from earlier analysis courses.
Consider

lim
t→0

(f(a + vt)− f(a)) = lim
t→0

f(a + vt)− f(a)

t
t = lim

t→0

f(a + vt)− f(a)

t
lim
t→0

t,

using the Product Rule for limits, allowable only if the two limits exist. The
second limit is 0, the first is dvf(a) which exists by assumption. Hence

lim
t→0

(f(a + vt)− f(a)) = dvf(a)×0 = 0,

which gives required result.

10. Define the function f : Rn → R by x→ |x|.
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i. Prove that f is continuous in any direction at the origin.

ii. Show that in no direction through the origin does f have a directional
derivative.

This example illustrates the fact that

continuous in a direction 6=⇒ differentiable in that direction.

Solution i. Let v, a unit vector, be given. Then

f(0 + tv) = |tv| = |t| |v| →
t→0

0 = f (0) .

Hence f is continuous at 0 in the direction v. Yet v was arbitrary, so f is
continuous in any direction at the origin.

ii. Let v, a unit vector, be given. Then

f(0 + tv)− f(0)

t
=
|t| |v|
t

.

It is well-known that limt→0 |t| /t does not exist; the right hand and left hand
limits are different. Hence

lim
t→0

f(0 + tv)− f(0)

t

does not exist, i.e. f has no directional derivative at 0 in the direction of
v. Yet v was arbitrary, so in no direction through the origin does f have a
directional derivative.

11. Assume f : U ⊆ Rn → R, a ∈ U and we have a unit vector v ∈
Rn. Prove that if the directional derivative dvf (a) exists then so does the
directional derivative d−vf (a) and that it satisfies d−vf (a) = −dvf (a).

Solution Consider the definition of d−vf (a) ,

lim
t→0

f(a + (−v) t)− f(a)

t
= lim

t→0

f(a− vt)− f(a)

t

= lim
s→0

f(a + vs)− f(a)

−s
putting s = −t

= −dvf(a) .
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That the limit exists means that d−vf(a) exists and further satisfies d−vf (a) =
−dvf (a).

12. Using the definition of directional derivative calculate d1(x
2y) and d2(x

2y).
Hence verify that these directional derivatives are the partial derivatives w.r.t
x and y respectively.

Solution Let f(x) = x2y for x = (x, y)T ∈ R2. By definition d1f(x) =
de1f(x) so

d1f(x) = lim
t→0

1

t
(f(x + te1)− f(x))

= lim
t→0

1

t

(
(x + t)2 y − x2y

)
= lim

t→0

1

t

(
2txy + t2y

)
= 2xy =

∂

∂x

(
x2y
)

=
∂

∂x
f(x) .

Similarly, d2f(x) = de2f(x) so

d2f(x) = lim
t→0

1

t
(f(x + te2)− f(x))

= lim
t→0

1

t

(
x2 (y + t)− x2y

)
= lim

t→0

1

t

(
x2t
)

= x2 =
∂

∂y

(
x2y
)

=
∂

∂y
f(x) .

13. Find the partial derivatives of the following functions:

i. f : U → R, x 7→ x ln (xy) where U = {x ∈ R2 : xy > 0} ;

ii. f : R3 → R, x→ (x2 + 2y2 + z)
3

;

iii. f : Rn → R,x→ |x| for x 6= 0. What goes wrong when x = 0?

Hint In Part iii write out the definition of |x|.

Solution i.
∂f

∂x
(x) = ln (xy) + 1 and

∂f

∂y
(x) =

x

y
.

8



ii.

∂f

∂x
(x) = 6x

(
x2 + 2y2 + z

)2
,

∂f

∂y
(x) = 12y

(
x2 + 2y2 + z

)2
∂f

∂z
(x) = 3

(
x2 + 2y2 + z

)2
.

iii As suggested, write out |x| in terms of its coordinates as

|x|2 =
n∑

j=1

(
xj
)2

. Then 2 |x| ∂ |x|
∂xi

= 2xi, that is
∂f

∂xi
(x) =

xi

|x|
,

for x 6= 0. To see what goes wrong when x = 0 return to the definition of
partial derivative. For any 1 ≤ i ≤ n,

∂f

∂xi
(0) = lim

t→0

f(0 + tei)− f(0)

t
= lim

t→0

|tei|
t

= lim
t→0

|t|
t
,

which does not exist; the left hand side and right hand side limits are differ-
ent.

14. Define the function f : R2 → R by

f(x) =
x2y

x2 + y2
if x 6= 0; f (0) = 0.

This as been previously seen in Question 11iii on Sheet 1.

i. Prove that f is continuous at 0.

ii. Find the partial derivatives of f at 0. (Hint return to the definition of
derivative.)

iii. Prove that dvf(0) exists for all unit vectors v, and, in fact, equals f(v).

Solution i

lim
x→0

f(x) = 0 by Question 11iii on Sheet 1

= f(0)

by the definition of f . Hence f is continuous at 0.
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ii The partial derivative w.r.t x is de1f(0), if it exists. By definition this is

lim
t→0

f(0 + te1)− f(0)

t
= lim

t→0

t20

t2 + 02
= 0.

Since the limit exists the partial derivative exists and

∂f

∂x
(0) = 0.

Similarly

lim
t→0

f(0 + te2)− f(0)

t
= lim

t→0

02t

02 + t2
= 0, so

∂f

∂y
(0) = 0.

iii. To find the directional derivatives of f at 0 in the direction of the unit
vector v write v = (u, v)T . Then

f(0 + tv) = f

((
tu

tv

))
=

(tu)2 tv

t2 (u2 + v2)
= t

(u)2 v

u2 + v2
= tf(v) .

Thus

lim
t→0

f(0 + tv)− f(0)

t
= f(v) .

Since the limit exists dvf(0) exists and further, dvf(0) = f(v) .

15. Define the function f : R2 → R by

f(x) =
xy

x2 + y2
if x 6= 0; f(0) = 0.

It was shown in Question 11ii on Sheet 1 that f does not have a limit at
0 and so is not continuous at x = 0.

i. Show that, nonetheless, the partial derivatives of f exist at 0.

ii. Prove that for all unit vectors v 6= e1 or e2 the directional derivative
dvf(0) does not exist.
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This example illustrates the point that

∀i, dif(a) exists 6=⇒ ∀v, dvf(a) exists

Solution i. Consider

lim
t→0

f(0 + te1)− f(0)

t
= lim

t→0

t×0

|t|2 t
= lim

t→0
0 = 0.

Hence ∂f (0) /∂x = 0. Similarly ∂f (0) /∂y = 0.

ii. To find the directional derivatives of f at 0 in the direction of the unit
vector v write v = (u, v)T . Then

f(0 + tv) = f

((
tu

tv

))
=

(tu) tv

t2 (u2 + v2)
=

uv

u2 + v2
= f(v) .

Thus

lim
t→0

f(0 + tv)− f(0)

t
= lim

t→0

f(v)

t
,

which does not exist unless f(v) = 0 i.e. if either u or v = 0 which is the
same as v = e2 or e1 respectively.
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Solutions to Additional Questions 3

16. The Product Rule for directional derivatives

i. Assume for the scalar-valued functions f, g : U ⊆ Rn → R that the
directional derivatives dvf(a) , dvg (a) exist for some a ∈ U,v ∈ Rn. Prove
that the directional derivative dv (fg) (a) exists and satisfies

dv (fg) (a) = f(a) dvg(a) + g(a) dvf(a) .

ii Use Part i with the result of Question 5 to independently check your answer
to Question 4.

Hint in Part i no new ideas are needed; look back to last year at proofs for
differentiating products of functions.

Solution i. Consider

lim
t→0

fg(a + vt)− fg(a)

t

= lim
t→0

f(a + vt) g(a + vt)− f(a) g(a)

t

= lim
t→0

(
f(a + vt)− f(a)

)
g(a + vt) +

(
g(a + vt)− g(a)

)
f(a)

t
.

Here we have used the idea of ‘adding in zero’, namely −f(a) g(a + vt) +
g(a + vt) f(a). So

lim
t→0

fg (a + vt)− fg (a)

t
= lim

t→0

(
f(a + vt)− f(a)

)
g (a + vt)

t

+ lim
t→0

(
g (a + vt)− g (a)

)
f(a)

t
.

Here we have used the Sum Rule for limits (Question 5 on Sheet 1), only
allowed if the two individual limits exist. We will see below that they do.
Continuing, using the Product Rule for limits,

lim
t→0

fg (a + vt)− fg (a)

t
= lim

t→0

f(a + vt)− f(a)

t
lim
t→0

g (a + vt)

+f(a) lim
t→0

g (a + vt)− g (a)

t

= dvf(a) g (a) + f(a) dvg (a) . (1)
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Here we have used the fact that dvg (a) exists implies that g (a + vt), as a
function of t is continuous at t = 0 (Question 9). That the limit exists proves
that dv (fg) (a) exists. The required formula for it follows from (1).

ii. The function f of Question 4 is f(x) = xy2z = (xy) (yz) = f 1(x) f 2(x),

where f 1 and f 2 are the two component functions of the vector-valued func-
tion in Question 5. The a and v are the same in both questions. From Ques-
tion 5 we find dvf

1(a) = −2/
√

6 and dvf
2(a) = −8/

√
6. Also f 1(a) = 3 and

f 2(a) = −6. Therefore, by part i.,

dvf(a) = − 2√
6
× (−6)− 3× 8√

6
= −2

√
6,

which hopefully confirms your answer to Question 4.

17. Extra questions for practice From first principles calculate the di-
rectional derivatives of the following functions.

i. f : R2 → R3, x 7→ (x + y, x− y, xy)T , at a = (2,−1)T in the direction
v = (1,−2)T /

√
5,

ii. g : R→ R2, x 7→ (x + 1, x2 − 2)
T
, at a = 1 in the direction of v = −1,

iii. h ◦ f : R2 → R, with f as in part i, and h (x) = xy2z for x ∈ R3, at
a = (2,−1)T in the direction v = (1,−2)T /

√
5,

iv. f ◦ g : R→ R3 at a = 1 in the direction of v = −1.

Solution i. Firstly,

a + tv =

(
2 + t/

√
5

−1− 2t/
√

5

)
.

So

f(a + tv) =


1− t/

√
5

3 + 3t/
√

5(
2 + t/

√
5
) (
−1− 2t/

√
5
)
 and f(a) =

 1
3
−2

 .
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Hence

f(a + tv)− f(a)

t
=

1

t


−t/
√

5

3t/
√

5

−5t/
√

5− 2t2/5

 =


−1/
√

5

3/
√

5

−5/
√

5− 2t/5



→ 1√
5

 −1
3
−5

 .

as t → 0. Since the limit exists dvf(a) exists and, further, dvf(a) =
(−1, 3, −5)T /

√
5.

ii. Start with

g (a + tv) = g (1− t) =

(
2− t

(1− t)2 − 2

)
, so g (a) =

(
2

−1

)
.

Then

g (a + tv)− g (a)

t
=

1

t

(
−t

(1− t)2 − 1

)
=

(
−1

−2 + t

)
→
(
−1
−2

)
,

as t → 0. Since the limit exists dvg (a) exists and, further, dvg (a) =
(−1, −2)T .

iii. The composite function h ◦ f : R2 → R is given by

(
x
y

)
f7→

 x + y
x− y
xy

 h7→ (x + y) (x− y)2 xy.

Consider first

h ◦ f(a + tv) = h ◦ f

((
2 + t/

√
5

−1− 2t/
√

5

))

=

(
1− t√

5

)(
3 +

3t√
5

)2(
2 +

t√
5

)(
−1− 2t√

5

)
.

In particular h ◦ f(a) = −18. Use the big O-notation, seen in the solution
to Question 4, worrying only about the constant and t terms. Also, to ease
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notation, write y = t/
√

5 and expand

(1− y) (3 + 3y)2 (2 + y) (−1− 2y) = 9 (1− y) (1 + y)2
(
−2− 5y + O

(
y2
))

= 9 (1− y)
(
1 + 2y + O

(
y2
)) (
−2− 5y + O

(
y2
))

= 9
(
1 + y + O

(
y2
)) (
−2− 5y + O

(
y2
))

= 9
(
−2− 7y + O

(
y2
))

Thus

h ◦ f(a + tv) = −18− 63
t√
5

+ O
(
t2
)
.

Hence

h ◦ f(a + tv)− h ◦ f(a)

t
=

1

t

((
−18− 63

t√
5

+ O
(
t2
))
− (−18)

)

= − 63√
5

+ O(t)→ − 63√
5

as t→ 0. Since the limit exists dv (h ◦ f) (a) exists and, further, dv (h ◦ f) (a) =
−63/

√
5.

iv. The composite function f ◦ g : R→ R3 is given by

x
g7→
(

x + 1
x2 − 2

)
f7→

 x2 + x− 1
−x2 + x + 3

(x2 − 2) (x + 1)

 .

Then

(f ◦ g) (a + tv) = (f ◦ g) (1− t) =

 t2 − 3t + 1
−t2 + t + 3

−t3 + 4t2 − 3t− 2

 .

In particular (f ◦ g) (a) = (1, 3, −1)T . Thus

(f ◦ g) (a + tv)− (f ◦ g) (a)

t
=

 t− 3
−t + 1

−t2 + 4t− 3

→
 −3

1
−3


as t→ 0. Since the limit exists dv (f ◦ g) (a) exists and, further, dv (f ◦ g) (a) =
(−3, 1, −3)T .

18. Some important functions from the course are
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• the projection functions pi : Rn → R, x 7→ xi;

• the product function p : R2 7→ R, x = (x, y)T 7→ xy and

• the quotient function q : R× R† → R, x = (x, y)T 7→ x/y.

Find dvp
i(a) ; dvp(a) for a,v ∈ R2 and dvq(a) for a ∈ R×R† and v ∈ R2.

Solution For a,v ∈ Rn we have dvp
i(a) = vi. With a = (a, b)T and

v = (u, v)T we have dvp(a) = ub + va and dvq(a) = (ub− va) /b2.
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