MATH20132 Calculus of Several Variable. 2020-21
Solutions to Problems 3: The Directional Derivative

1 Define the functions

i. f:R* >R, x> x(r+y) and

ii. g:R2 =R, x—ylz—y).

Find the directional derivatives of f and g at a = (1,2)" in the direction

v=(2-1)"/V5.

Solution First note that

a+tv:<12+_2f//j§>.

2t t 7.2,
f(a+tv): (1—1-%) (3‘1‘@) :3+%t+gt.
Thus f(a) = 3 and

farm)f@ 7 2

t NG NG

as t — 0. Since the limit exists the directional derivative exists and satisfies

dvf(a) = 7/\/5

For g we have

glat+tv)= (2— %) (—1+%) = —2+%t— %tQ.
Thus g(a) = —2 and

gla+tv) —g(a) 7 3 7

= i —,
t Vi 5 B
as t — 0. Since the limit exists the directional derivative exists and satisfies

dyg(a) = 7/v/5.

2. Find the directional derivative of f : R? - R, x — z%y at a = (2, 1)T in
the direction of the unit vector v = (1, —1)" /v/2.



Solution First note that

aviv=(TEUV2).

flat+tv) = (2+%>2 (1—%) :4—%#—%#’&

This leads to the existence of the directional derivative and it’s value
dyf(a) = 0.

3. Define the function h : R® — R, by x — a2y + yz + xz. By verifying the
definition, find the directional derivative of h at a = (1,2, 3)” in the direction
of the unit vector v = (3,2,1)" /v/14.

SO

Solution First note that
1+ 3t//14
at+vt=| 2+2t/\/14
34+t/V/14
So
t

h(a+vt) = <1+3\/%) <2+2\/%)+<2+2\/%> <3+ﬁ>

(1432 (34 o)

= 248 ! +6t2+6+8 ! +2t2+3+10 t +3t2
B V14 14 V14 14 V14 14
11426 +11t2
B V14 14
Then
h(a+ vt) — h(a) 1 t t? 1 t
= (26— +11— ) =26—= + 11—
i P\ T NV RSy
26
V14’

as t — 0. Since the limit exists the directional derivative exists and satisfies

dyh(a) = 26/v/14.



4. Define the function f : R® — R, by x — xy%2. By verifying the definition,
find the directional derivative of f at a = (1,3, —2)" in the direction of the
unit vector v = (—1,1,-2)" /1/6.

Solution Firstly,
1-t/V6
attv= 3+t/V6
—2—2t/\/6

e = () o+ ()

8 1 1
—t2 4 —¢3 — ¢t
3 * 3 V6 + 18

You do not need all this detail, instead write it as —18 — 2tv/6 + O (?),
where the O (t?) notation represents the sum of all terms with ¢* or higher
powers.

This will lead us to dy f(a) = —2v/6.

Then

= —18—2tV6 +

5. Define the function f : R? — R? by

()
Yz
where x = (z,y,2)". By verifying the definition, find the directional deriva-
tive of f at a = (1,3, —2)" in the direction of the unit vector v = (—1,1, —2)" /v/6.

Do not look at the component functions separately.

Solution Consider, for t # 0,

flat+tv)—f(a) 1{( (1—t/V6) (3+1t/V6) )_( 3>}
t t (34t/v6) (-2 —2t//6) —6

1 —2t/V6-#/6 \ [ —2/V6-1/6
t < —8t/\/6 — 22/6 ) - ( —8/7/6 — 2t/6 )

()
— ast — 0,

—8/\/6

G
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Since the limit exists the directional derivative exists and satisfies

Find the directional derivative of £ at a = (1,2)" in the direction v =
(27 _1)T /\/5

Hint Notice the difference in wording between this question and the previous
one; here I do not ask you to verify the definition.

Solution Use the result that the directional derivative of a vector-valued
function exists iff the directional derivatives of it’s component functions exist
and satisfy d,f (a)’ = dyf*(a). In this case the component functions have
been seen in Question 1, where their directional derivatives were shown to
exist and thus d,f (a) exists. Further,

d.f(a) = < gzﬁgzg ) - ( ;jg > '

7 Define the function f : R? — R? by

2
_ (Y
o0 = ().
Find the directional derivative of £ at a = (2,1)" in the direction v =

(17 _1)T/\/5'

Solution d,f(a) exists iff d, f!(a) and d, f*(a). Here f1(x) = zy* was an
example in lectures where we found d f'(a) = —3/v/2. And f?(x) = 2%y was
the subject of Question 2 above where we found that d, f?(a) = 0. Hence

dyf(a) = ( 2:?3523 ) - % ( K ) |



i. Let c € R" be fixed. Let f: R" — R, x — c e x. Show that

for all a,v € R™.

ii. Let M € M,,,,(R) and f : R* - R™, x +— Mx. Show that

for all a,v € R™.

iii. Can you generalise these results? I.e. of what type of function are
X — cex and x — Mx examples?

Solution i. Let a,v € R" be given. Consider

f(a+tv) —f(a)
t

= g(Co(athv) —cea)= Z(coa-l—tcov—coa)
since the scalar product is distributive

= cev="_f(v),

for all t # 0. Hence

lim fla+tv) —f(a) ().

t—0 t

That the limit exists means that the directional derivative exists. That the
limit is f(v) means that d,f(a) = f(v).

ii. Let a,v € R" be given. Consider

f(a+t‘;)—f(a) _ %(M(a—l—tv)—Ma) :%(MajttMv—Ma)

since matrix multiplication is distributive

= Mv="_F(v),

for all t # 0. Hence




That the limit exists means that the directional derivative exists. That the
limit is f(v) means that d,f(a) = f(v).

iii. Both x — cex and x — Mx are examples of linear functions. Let
L : R" — R™ be a linear function. Let a,v € R™ be given. Consider
L(a+tv)—L(a)  L(a)+tL(v)—L(a)

t t

by the linearity of L
= L(v),
for all ¢ # 0. Hence

lim L(a+tv) — L(a) _L(v).

t—0 t

That the limit exists means that the directional derivative exists. That the
limit is L(v) means that d,L(a) = L(v).

9. Assume for the scalar-valued function f : U C R™ — R the directional
derivative dy f(a) exists for some a,v € R". Prove that

lim f(a + tv) = f(a)

This is yet another example of the principle that if a function is differentiable
at a point then it is continuous at that point. There are no new ideas in the
proof, look back at previous proofs of differentiable implies continuous.

Solution This is a proof you should recognise from earlier analysis courses.
Consider

lim (f(a+ vt) — f(a)) = lim LEFYD = S@), ) Jlatv) =), ,

t—0 t—0 t t—0 t t—0

using the Product Rule for limits, allowable only if the two limits exist. The
second limit is 0, the first is dy f(a) which exists by assumption. Hence

i (f(a+v) — f(a) = dy f() x0 =0,
which gives required result.
10. Define the function f : R” — R by x — |x].
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i. Prove that f is continuous in any direction at the origin.

ii. Show that in no direction through the origin does f have a directional
derivative.

This example illustrates the fact that

continuous in a direction =% differentiable in that direction.

Solution i. Let v, a unit vector, be given. Then

FO+tv) = [tv] = |t][v] = 0=/ (0).

Hence f is continuous at 0 in the direction v. Yet v was arbitrary, so f is
continuous in any direction at the origin.

ii. Let v, a unit vector, be given. Then
fO+tv) = f(0) _ [t]]v]
t t

It is well-known that lim;_,o |¢| /t does not exist; the right hand and left hand
limits are different. Hence

i S04 ) = £(0)

t—0 t

does not exist, i.e. f has no directional derivative at 0 in the direction of
v. Yet v was arbitrary, so in no direction through the origin does f have a
directional derivative.

11. Assume f : U C R®" — R, a € U and we have a unit vector v €
R™. Prove that if the directional derivative d, f (a) exists then so does the
directional derivative d_, f (a) and that it satisfies d_, f (a) = —d, f (a).

Solution Consider the definition of d_, f (a),
flat (=v)t) - f(a) fla—vt) — f(a)

lim = lim
t—0 t t—0 t
= lim fla+vs) =/ putting s = —t
s—0 —S
= _dvf(a) :



That the limit exists means that d_,, f(a) exists and further satisfies d_ f (a) =
_dvf (a)

12. Using the definition of directional derivative calculate d; (z%y) and da(2?y).
Hence verify that these directional derivatives are the partial derivatives w.r.t
x and y respectively.

Solution Let f(x) = 22y for x = (z,y)" € R2 By definition d,f(x) =
de, f(x) s0

D) =l (FOctter) — f(x)

t—0

= lim1 ((z+ )’y — ’y) = %g%% (2tzy + t7y)

t—0 ¢t

0 0
= 2ry = a(ﬁy) = E (x) .

Similarly, dsf(x) = de, f(x) so

BI() = T (Fx+ ter) = [(x))

t—0

= lim1 (2 (y +t) — 2%y) = lim1 (2°t)

t—0 t t—0 {

0 0
= @t = 5 (o) = S0,

13. Find the partial derivatives of the following functions:
i f:U—=R, x— zln(zy) where U = {x € R? : zy > 0} ;
i, i RP R x— (224202 +2)°;
iii. f:R" — R,x — |x| for x # 0. What goes wrong when x = 07
Hint In Part iii write out the definition of |x|.
Solution i.

af

8—x(x):1n(a:y)+1 and —— (x) =



ii.

of
ox

(x) = 6x (x2+2y2+z)2, %(x)=12y (x2+2y2+z)2

of

5 (x) =3 (22 + 2% + 2)°.

iii As suggested, write out |x| in terms of its coordinates as

n

x|* = Z (xj)z. Then 2 |x| %'—;’ = 22", that is % (x) = .

i=1

for x # 0. To see what goes wrong when x = 0 return to the definition of
partial derivative. For any 1 <17 < n,

OF (o) — iy 1104 10) ~ F(O)

oxt t0 t t50 ¢ 50 ¢t

which does not exist; the left hand side and right hand side limits are differ-
ent.

14. Define the function f : R? — R by

f(x) T #0; f(0)=0

X)) = ——— 1 X : = .
x% 4 12 ’

This as been previously seen in Question 11iii on Sheet 1.

i. Prove that f is continuous at O.

ii. Find the partial derivatives of f at 0. (Hint return to the definition of
derivative.)

iii. Prove that dy f(0) exists for all unit vectors v, and, in fact, equals f(v).
Solution i
iii% f(x) = 0 by Question 11iii on Sheet 1
= f(0)

by the definition of f. Hence f is continuous at 0.



ii The partial derivative w.r.t x is de, f(0), if it exists. By definition this is

. f0+te;) — f(0O) . 20
lim = lim
t—0 t t—0 t2 + (2

Since the limit exists the partial derivative exists and

of
Similarly
. fl0+tey)—f(O) . 0% of ...
M Mgt 0 5,00

iii. To find the directional derivatives of f at 0 in the direction of the unit
vector v write v = (u,v)". Then

f<0+tv):f(<tu>): (tu)* tv :t(u)Qv ).

tv 2 (u?2+v?) u?+0?
Thus 0 0

Since the limit exists dy f(0) exists and further, dy f(0) = f(v).

15. Define the function f:R? — R by

fx) =52 if x#£0;  f(0)=0.

x2 492

It was shown in Question 11ii on Sheet 1 that f does not have a limit at
0 and so is not continuous at x = 0.

i. Show that, nonetheless, the partial derivatives of f exist at 0.

ii. Prove that for all unit vectors v # e; or e, the directional derivative
dy f(0) does not exist.
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This example illustrates the point that

Vi, d;f(a)exists =~ Vv, d, f(a) exists

Solution i. Consider

0+4te;) — f(O t
ti L@ ) ZJO) o X0,
t—0 t t—0 |t\ t t—=0

Hence 0f (0) /0xz = 0. Similarly 0f (0) /0y = 0.

ii. To find the directional derivatives of f at 0 in the direction of the unit
vector v write v = (u,v)". Then

f(0+tv):f<<tu)): ()t _wo

tv 2 (u2 4+ v2) w2+ o2
Thus 0 0
i O 09 = O) (v
t—0 t t—0 ¢

which does not exist unless f(v) = 0 i.e. if either u or v = 0 which is the
same as v = ey or e; respectively.
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Solutions to Additional Questions 3

16. The Product Rule for directional derivatives

i. Assume for the scalar-valued functions f,¢g : U C R" — R that the
directional derivatives dy f(a),dyg (a) exist for some a € U,v € R". Prove
that the directional derivative dy (fg) (a) exists and satisfies

dv (fg) (a) = f(a)dvg(a) + g(a) dv f(a).

ii Use Part i with the result of Question 5 to independently check your answer
to Question 4.

Hint in Part i no new ideas are needed; look back to last year at proofs for
differentiating products of functions.

Solution i. Consider

1o 9@+ vE) — fg(a)

t—0 t
o et Vi) glatvi) — f(a) g(a)
t—0 t
o (Fla vt — J(@))glatvi) + (glat vi) — o)) f(a)
t—0 t ’

Here we have used the idea of ‘adding in zero’, namely —f(a)g(a + vt) +
gla+vt) f(a). So

i J0@ V) —fg(@) . (flatvt)— f(a))g(atvi)
t—0 t t—0 t

iy 0EHY0 —9(@) S a)

Here we have used the Sum Rule for limits (Question 5 on Sheet 1), only
allowed if the two individual limits exist. We will see below that they do.
Continuing, using the Product Rule for limits,

%g%fg(aJrVi)—fg(a) _ %i_x)%f(a+vi)_f<a)llfi_]r>%g(a+vt)

glat+vt) —g(a)

+f(a)lim ;
= dvf(a)g(a) + f(a)dvg (a). (1)

12



Here we have used the fact that d,g(a) exists implies that g (a + vt), as a
function of ¢ is continuous at t = 0 (Question 9). That the limit exists proves
that dy (fg) (a) exists. The required formula for it follows from (1).

ii. The function f of Question 4 is f(x) = xy?z = (zy) (y2z) = f1(x) f?(x),
where f! and f? are the two component functions of the vector-valued func-
tion in Question 5. The a and v are the same in both questions. From Ques-
tion 5 we find d, f!(a) = —2/+/6 and d, f*(a) = —8/1/6. Also f'(a) = 3 and
f?(a) = —6. Therefore, by part i.,

dy f(a) = —% x (—6) — 3 x % — —2V6,

which hopefully confirms your answer to Question 4.

17. Extra questions for practice From first principles calculate the di-
rectional derivatives of the following functions.

iR R x— (z+y,z— y,xy)T, at a = (2, —1)T in the direction

v=(1,-2)" /V5,
ii. g:R—>R*z— ($+1,$2—2)T, at @ = 1 in the direction of v = —1,

iii. hof:R? — R, with f as in part i, and h(x) = zy*z for x € R3, at
a=(2,—1)" in the direction v = (1, —-2)" /1/5,

iv. fog:R — R?ata=1in the direction of v = —1.

Solution i. Firstly,

So

1—t/V/5 1
flat+tv)= 3+3t/V5 and f(a)=| 3
(2+t/v5) (—1 — 2t/v/5) —2
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Hence

£ ) f(a) ) —t/V/5 ~1/V5
a+tv)—1(a
- = < 3t/vV5 = 3/V5
—5t/v/5 — 2t%/5 —5/v5—2t/5
—1
1
— % g

as t — 0. Since the limit exists d,f(a) exists and, further, d,f(a) =

(-1, 3, =5)" /\/5.

ii. Start with

IV 2t (2
gla+tv) =g/ —t)—(a_t)z_z), 0 g<a>_(_1).

Then

glattv)—gla) 1 t _( ! -1
t _t<(1—t)2—1)_<—2+t>_)(_2)’

as t — 0. Since the limit exists dyg(a) exists and, further, d,g(a)
(-1, =2)".

iii. The composite function hof : R? — R is given by

x\ f Ty h
2
< >|—> r—y | = (x+y)(r—y) xy.
Yy 2y

Consider first

) 2+t/\/5
hof(a+tv) = h0f<< —1-2t/V5 >>

() B (R B

In particular h o f(a) = —18. Use the big O-notation, seen in the solution

to Question 4, worrying only about the constant and ¢ terms. Also, to ease
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notation, write y = ¢/4/5 and expand

1-y)B+3y)°2+y) (-1-2y) =

Thus

hof(a+tv)=—18 — 63% +0(t%) .

Hence

hof(a+tv) —hof(a) 1((

p Z

—18 — 63% + O(t2)> - (—18))

63 63
= —E + O(t) — _ﬁ

ast — 0. Since the limit exists dy (h o f) (a) exists and, further, dy (h o f) (a) =

—63//5.

iv. The composite function f o g : R — R3 is given by

41 . > +ax—1
x'i($2_2)'—> —z* 42 +3
(22 —-2)(z+1)
Then
2 —3t+1
(fog)(a+tv)=(fog)(l—-1)= —t2+t+3

— 34442 -3t —2

In particular (f o g) (a) = (1, 3, —1)". Thus

t—3 -3
(fog)(a—i—tvt)—(fog)(a): i1 N 1
—t2 4+ 4t —3 -3

ast — 0. Since the limit exists dy (f o g) (a) exists and, further, dy (f o g) (a) =
(=3,1, =3)".

18. Some important functions from the course are
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e the projection functions p’ : R* — R, x + a%;
e the product function p : R? = R, x = (, y)T — xy and

e the quotient function ¢ : R x RT — R, x = (u, y)T — x/y.

Find d,p‘(a) ; dyp(a) for a,v € R? and d,q(a) fora € RxR' and v € R2.

Solution For a,v € R" we have dypi(a) = v'. With a = (a,b)" and
v = (u,v)" we have dyp(a) = ub+ va and dyg(a) = (ub — va) /b>.
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